> Formations > Technologies numériques > Intelligence Artificielle, Big Data > Big Data > Formation Data Analytics avec Python > Formations > Technologies numériques > Formation Data Analytics avec Python

Formation : Data Analytics avec Python

modélisation et représentation des données

Data Analytics avec Python

modélisation et représentation des données


Best

Data Analytics est un terme pour exprimer les démarches d'analyse de données, afin d'être en mesure de prendre des décisions. Le langage Python dispose d'un écosystème permettant les traitements statistiques : de la construction de modèles d'analyse, à leur évaluation jusqu'à leur représentation.


INTER
INTRA
SUR MESURE

Cours pratique en présentiel ou à distance
Disponible en anglais, à la demande

Réf. BDA
  4j - 28h00
Prix : 2920 € H.T.
Pauses-café et
déjeuners offerts




Data Analytics est un terme pour exprimer les démarches d'analyse de données, afin d'être en mesure de prendre des décisions. Le langage Python dispose d'un écosystème permettant les traitements statistiques : de la construction de modèles d'analyse, à leur évaluation jusqu'à leur représentation.


Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
Comprendre le principe de la modélisation statistique
Choisir entre la régression et la classification en fonction du type de données
Évaluer les performances prédictives d'un algorithme
Créer des sélections et des classements dans de grands volumes de données pour dégager des tendances

Public concerné
Responsables Infocentre (Datamining, Marketing, Qualité...), utilisateurs et gestionnaires métiers de bases de données.

Prérequis
Connaissances de base en Python. Connaissances de base en statistiques ou avoir suivi le stage "Statistiques, maîtriser les fondamentaux" (Réf. STA).
Vérifiez que vous avez les prérequis nécessaires pour profiter pleinement de cette formation en faisant  ce test.

Méthodes et moyens pédagogiques
Travaux pratiques
Développement/réalisation d'analyses sur le logiciel Python, avec les modules pandas, NumPy, SciPy, MatPlotLib, seaborn, scikit-learn et statsmodels.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Programme de la formation

Introduction à la modélisation

  • Introduction au langage Python.
  • Introduction au logiciel Jupiter Notebook.
  • Les étapes de construction d'un modèle.
  • Les algorithmes supervisés et non supervisés.
  • Le choix entre la régression et la classification.
Travaux pratiques
Installation de Python 3, d'Anaconda et de Jupiter Notebook.

Procédures d'évaluation de modèles

  • Les techniques de ré-échantillonnage en jeu d'apprentissage, de validation et de test.
  • Test de représentativité des données d'apprentissage.
  • Mesures de performance des modèles prédictifs.
  • Matrice de confusion, de coût et la courbe ROC et AUC.
Travaux pratiques
Mise en place d'échantillonnage de jeux de donnes. Effectuer des tests d'évaluations sur plusieurs modèles fournis.

Les algorithmes supervisés

  • Le principe de régression linéaire univariée.
  • La régression multivariée.
  • La régression polynomiale.
  • La régression régularisée.
  • Le Naive Bayes.
  • La régression logistique.
Travaux pratiques
Mise en œuvre des régressions et des classifications sur plusieurs types de données.

Les algorithmes non supervisés

  • Le clustering hiérarchique.
  • Le clustering non hiérarchique.
  • Les approches mixtes.
Travaux pratiques
Traitements de clustering non supervisés sur plusieurs jeux de données.

Analyse en composantes

  • Analyse en composantes principales.
  • Analyse factorielle des correspondances.
  • Analyse des correspondances multiples.
  • Analyse factorielle pour données mixtes.
  • Classification hiérarchique sur composantes principales.
Travaux pratiques
Mise en œuvre de la diminution du nombre des variables et identification des facteurs sous-jacents des dimensions associées à une variabilité importante.

Analyse de données textuelles

  • Collecte et prétraitement des données textuelles.
  • Extraction d'entités primaires, d'entités nommées et résolution référentielle.
  • Étiquetage grammatical, analyse syntaxique, analyse sémantique.
  • Lemmatisation.
  • Représentation vectorielle des textes.
  • Pondération TF-IDF.
  • Word2Vec.
Travaux pratiques
Explorer le contenu d'une base de textes en utilisant l'analyse sémantique latente.
Parcours certifiants associés
Pour aller plus loin et renforcer votre employabilité, découvrez les parcours certifiants qui contiennent cette formation :

Solutions de financement
Plusieurs solutions existent pour financer votre formation et dépendent de votre situation professionnelle.
Découvrez-les sur notre page Comment financer sa formation ou contactez votre conseiller formation.

Avis clients
4,2 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
ALEXANDRE B.
03/12/24
4 / 5

Concernant le support pdf de formation, je trouve qu’il manque d’explications sur les diapos sur lesquelles il n’y a qu’une figure. Cela ne permet pas à ce support d’être suffisamment autoporteur quand on veut le reprendre quelques semaines / mois après la formation (comme on avance assez vite sur les nombreux abordés, la prise de note est compliquée, d’où ce besoin d’auto-portage de la présentation à mon avis.Sinon les TP c’est top (peut-être passer + de
MOHAMMED Z.
03/12/24
5 / 5

cours complet, formateur Morgan super, excellent
JOCELYN L.
03/12/24
5 / 5

Très bonne formation et formateur compétent.Mes compétences ne respectaient pas les pré requis, cependant grace aux explications et à l’aide de GEMINI (sur DATA Collab) j’ai pu acquérir les concepts et avancer dans les TP.



Horaires
les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance

Dernières places
Date garantie en présentiel ou à distance
Session garantie