> Formations > Technologies numériques > Langages et développement > Python > Formation Traitement d’image avec Python > Formations > Technologies numériques > Formation Traitement d’image avec Python

Formation : Traitement d’image avec Python

Traitement d’image avec Python




Ce cours Python d’intelligence artificielle, vous permettra de réaliser des analyses de données en machine learning. Vous apprendrez à transformer une image et à en extraire des informations. Nous vous présenterons les bibliothèques de traitements d'image les plus usitées dans les projets de deep learning.


INTER
INTRA
SUR MESURE

Cours pratique en présentiel ou à distance
Disponible en anglais, à la demande

Réf. PYI
  3j - 21h00
Prix : 1910 € H.T.
Pauses-café et
déjeuners offerts




Ce cours Python d’intelligence artificielle, vous permettra de réaliser des analyses de données en machine learning. Vous apprendrez à transformer une image et à en extraire des informations. Nous vous présenterons les bibliothèques de traitements d'image les plus usitées dans les projets de deep learning.


Objectifs pédagogiques
À l’issue de la formation, le participant sera en mesure de :
Approfondir ses connaissances en langage Python
Réaliser une analyse de données en Machine Learning en Python
Découvrir des bibliothèques Python de traitement d'image
Transformer une image
Extraire des informations d'une image

Public concerné
Développeurs Python désirant s'approprier les principaux dispositifs d'apprentissage automatisé et de traitement d'image.

Prérequis
Pratique du langage Python et connaissances de NumPy et SciPy.
Vérifiez que vous avez les prérequis nécessaires pour profiter pleinement de cette formation en faisant  ce test.

Modalités d'évaluation
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques…
Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

Programme de la formation

1
Le traitement de l'image

  • La bibliothèque Pillow pour transformer les images.
  • Présentation de bibliothèques d'analyse d'image.
  • Manipulations simple d'image avec NumPy.
  • Présentation de Matplotlib pour l'affichage rapide.
Travaux pratiques
Utilisation de Pip ou Conda, transformations simples et manuelles d'images avec Numpy.

2
Traitement plus avancé des images

  • Filtrage, analyse et recherche d'information avec Scikit-image.
  • Présentation et transformations avec OpenCV.
  • OpenCV : détection de contours et de motifs.
Travaux pratiques
Mise en place des bibliothèques, manipulation et analyse d'images avec Scikit-image et OpenCV.

3
Apprentissage automatisé

  • Mise en place de Scikit-learn.
  • Exemple de données utilisables et classification des processus d'apprentissage automatisé.
  • Choix et utilisation d'un estimateur.
  • Amélioration de l'apprentissage supervisé et transformateurs.
Travaux pratiques
Multiples apprentissages supervisés sur des ensembles de données avec Scikit-learn.

4
Cas additionnels d'apprentissage automatisé

  • Décomposition - analyse en composantes principales et analyse discriminante linéaire.
  • Apprentissage non supervisé : multiples approches.
  • Divers algorithmes de classification.
Travaux pratiques
Utilisation d'algorithmes d'apprentissage additionnels de Scikit-learn.

5
Apprentissage pour les images

  • Classification d'image avec Scikit-learn, retour sur les algorithmes disponibles.
  • Présentation et installation de scikit-image.
  • Bibliothèque d'adaptation de l'apprentissage automatisé aux images numériques
  • Entrées et sorties de Scikit-image.
  • Analyse des images avec Scikit-image : segmentation, détection, mesures.
  • Transformations simples d'image avec Scikit-learn : convolutions et autres filtres.
  • Comparaison et assemblage d'images avec Scikit-image.
  • Amélioration d'image avec Scikit-image.
Travaux pratiques
Classification d'images, détection de visage, reconstitutions et améliorations avec scikit-learn et scikit-image.


Parcours certifiants associés
Pour aller plus loin et renforcer votre employabilité, découvrez les parcours certifiants qui contiennent cette formation :

Solutions de financement
Plusieurs solutions existent pour financer votre formation et dépendent de votre situation professionnelle.
Découvrez-les sur notre page Comment financer sa formation ou contactez votre conseiller formation.

Avis clients
4,6 / 5
Les avis clients sont issus des évaluations de fin de formation. La note est calculée à partir de l’ensemble des évaluations datant de moins de 12 mois. Seules celles avec un commentaire textuel sont affichées.
RÉMY L.
11/06/25
4 / 5

Le(s) sujet(s) est complexe et dense pour une durée de 3j.
AURELIEN D.
11/06/25
5 / 5

Le formateur a une très bonne connaissance des différents sujets traités et explique bien les différents concepts. Les TPs sont intéressants mais le temps accordé pour les faire seul est réduit à cause de la densité de la formation.Cependant, cela permet d’avoir des billes en vu d’approfondir certains sujets sur les applications qui m’intéressent.
OLIVIER E.
21/10/24
5 / 5

Fortement apprécier la partie Deep Learning. J’aurais réduit la partie image matching /machine learning pour donner plus de temps a deepnlearning



Horaires
les cours ont lieu de 9h à 12h30 et de 14h à 17h30.
Les participants sont accueillis à partir de 8h45. Les pauses et déjeuners sont offerts.
Pour les stages pratiques de 4 ou 5 jours, quelle que soit la modalité, les sessions se terminent à 16h le dernier jour.

Dates et lieux
Sélectionnez votre lieu ou optez pour la classe à distance puis choisissez votre date.
Classe à distance

Dernières places
Date garantie en présentiel ou à distance
Session garantie




PARTICIPANTS
Futurs managers et responsables d’équipe souhaitant structurer leur pratique managériale

PRÉREQUIS
Aucun

COMPÉTENCES DU FORMATEUR
Les experts qui animent la formation sont des spécialistes des matières abordées. Ils ont été validés par nos équipes pédagogiques tant sur le plan des connaissances métiers que sur celui de la pédagogie, et ce pour chaque cours qu’ils enseignent. Ils ont au minimum cinq à dix années d’expérience dans leur domaine et occupent ou ont occupé des postes à responsabilité en entreprise.

MODALITÉS D’ÉVALUATION
Le formateur évalue la progression pédagogique du participant tout au long de la formation au moyen de QCM, mises en situation, travaux pratiques… Le participant complète également un test de positionnement en amont et en aval pour valider les compétences acquises.

MOYENS PÉDAGOGIQUES ET TECHNIQUES
• Les moyens pédagogiques et les méthodes d’enseignement utilisés sont principalement : aides audiovisuelles, documentation et support de cours, exercices pratiques d’application et corrigés des exercices pour les stages pratiques, études de cas ou présentation de cas réels pour les séminaires de formation. • À l’issue de chaque stage ou séminaire, ORSYS fournit aux participants un questionnaire d’évaluation du cours qui est ensuite analysé par nos équipes pédagogiques. • Une feuille d’émargement par demi-journée de présence est fournie en fin de formation ainsi qu’une attestation de fin de formation si le stagiaire a bien assisté à la totalité de la session.

MODALITÉS ET DÉLAIS D’ACCÈS
L’inscription doit être finalisée 24 heures avant le début de la formation.

ACCESSIBILITÉ AUX PERSONNES HANDICAPÉES
Pour toute question ou besoin relatif à l’accessibilité, vous pouvez joindre notre équipe PSH par e-mail à l'adresse psh-accueil@orsys.fr.